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Our baseline estimates for distance costs vary substantially from those estimated using
the same data and methodology developed in Allen and Arkolakis (2014). The authors of that
study were kind enough to provide a main Matlab estimation file to us soon after we began
working on this project. We downloaded and cleaned the input files ourselves from the same
sources as the previous study, and wrote several small functions which were omitted from the
original code provided to us. Thus, we were quite surprised to find that our estimates vary
from the original not only quantitatively, but qualitatively as well. In particular, we estimate
a much higher variable cost for water and air than do Allen and Arkolakis. The rank of our
estimates for fixed costs are the same as Allen and Arkolakis. The rank of our variable costs
are the same, except for water transport which we estimate to be the most expensive form of
transport. See Table columns (1) and (2) below.

Allen and Arkolakis later released full replication code for their paper. Below we compare
our estimates in more detail. While we were not able to make our results match theirs exactly,
we can find several differences which explain part of the gap:

1. The input value of truck transport in Allen and Arkolakis is exactly twice what is
reported in the 2007 Commodity Flow Survey data we downloaded. It appears this
is a bug. Column (3) in Table shows that this does not drive the difference between
our estimates. We doubled the value of truck transport in our data, and our estimates
remained qualitatively the same. We speculate the estimates do not change much
because road transport is already the dominant form of shipment in the domestic
United States. Increasing the dominance does not have a qualitative effect on the
estimates.

2. In the Commodity Flow Survey data, pure water transport and pure rail transport are
separated from transport via water and truck and rail and truck.1 Allen and Arkolakis
use only pure water and rail transport in their input data, whereas we count both
categories. In Column (4) we run our code using only pure water and pure rail figures.
Our estimates of air and rail transport then move substantially closer to the numbers
estimated in Allen Arkolakis, although there is still quite a large difference.

3. The maps we use to compute distances for road and rail are nearly exactly the same
as those in Allen and Arkolakis. The water maps differ, however. We allow (cheap)
water transport only along common shipping routes in the ocean. Allen and Arkolakis
allow water transport along any part of the ocean. Because of different coordinate
systems hardwired into the code, it is hard to directly analyze how much this factors
in the analysis, although we argue below that map differences may be a substantial
contributer to our differing estimates.2

1Explicit category definitions for CFS data can be found here:
www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/commodity flow survey/def terms/index.html

2In addition to these differences, the coordinates used by Allen and Arkolakis for CFS
areas appear to be rounded as is typical when exporting data from Stata. Their coordinates

1



4. Allen and Arkolakis estimate the parameters for ther shippers’ discrete choice of mode of
transport minimizing the following loss function. Let ε(β)mod be the difference between
the predicted and observed fraction of shipments of mode m between origin o and
destination d evaluated at parameter vector β. Let N be the total number of bilateral
pairs:
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Our algorithm minimizes the squared residual:∑
m
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The two loss functions deliver qualitatively different solutions to the problem both in
Allen and Arkolakis’ code and in ours. We show how this affects our results by first
running Allen and Arkolakis’ baseline code using our data, and then running their code
using our data as well as our minimization algorithm.3 In Column (5) we see results
that are much more similar to Allen and Arkolakis than in the baseline. Using our
algorithm in Column (6), we move the results much closer to our baseline. Finally, in
Column (7) we run Allen and Arkolakis’ code with their data and with our minimization
algorithm.4 Here we see substantial convergence toward our baseline estimates. One
caveat is that air transport variable costs become even smaller than those estimated
in Allen and Arkolakis. We conclude that one of the main drivers of the difference
in our estimates may be the loss function in the estimation algorithm for the mode
of transport problem. Map differences may also be playing an important role, driving
differences in our air cost estimates, along with the choice of input data for water and
rail described above.

As a final comment, the results in our paper continue to be based on our baseline estimates.
We believe that it is proper to count water and truck as a water shipment and rail and truck
as a rail shipment since around 50% of the value of rail shipments in our data also involve
trucking, and around 30% of the value of water shipments involve trucking. We also believe
that forcing water shipments to be along trade routes to ports is also a realistic assumption,
since loading and unloading cargo without a port is costly. Finally, we prefer the smoother least
squares loss function for estimating the relative shipment costs by mode. In sum, although we
have not been able to understand exactly what causes the difference between our estimates,
we believe we have a few leads which could be investigated further. Since accounting for the
differences is not the primary goal of our study, we leave the discussion here.

1. AA Baseline

2. FJ baseline5

3. FJ Double Truck

4. FJ Double Truck / Only water,only rail

range from -2.2 to 2.1 million on the x-axis and from -1.2 to 1.4 million on the y-axis. All
coordinates with absolute value above one million have the final five digits rounded to zero.
As we were unable to precisely link our data sets, the extent that this affects estimates is not
clear.

3Because our input data on demographics was not in the same format as in Allen and
Arkolakis, in our final gravity regressions we altered Allen and Arkolakis’ code to omit de-
mographic similarity between locations. This may be driving some of the results we report
here

4Demographic similarity variables are included in the gravity regression here.
5There was a small bug which we fixed after running the AA comparisons below. In

particular we were missing several small locations in our estimation code. Adding these
locations did not change our estimates much, which can be seen by comparing column (8) and
column (2).
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Transport Type (1) (2) (3) (4) (5) (6) (7) (8)
Road var 0.5636 0.4065 0.4414 0.3094 0.4235 0.3944 0.5445 0.4430
Rail var 0.1434 0.3661 0.3935 0.2965 0.0016 0.3414 0.4405 0.3986
Water var 0.0779 0.6265 0.6439 0.4556 0.0454 0.4597 0.7915 0.6806
Air var 0.0026 0.2233 0.3187 0.1050 0.0506 0.0000 0.0000 0.3157
Rail fixed 0.4219 0.2995 0.3274 0.3308 0.3687 0.4178 0.5246 0.3106
Water fixed 0.5407 0.3428 0.3600 0.3907 0.3887 0.5938 0.6037 0.3384
Air fixed 0.5734 0.5254 0.4963 0.4935 0.3630 0.6313 0.8323 0.4904

Table 1: Comparing distance estimates in several models

5. AA code FJ data

6. AA code FJ data FJ mode obj

7. AA code/data FJ mode obj

8. FJ baseline before bug fix (omitting several small locations)
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